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In this work we discuss a non-trivial effect of the interfacial curvature on the stability
of uniformly and suddenly accelerated interfaces, such as liquid rims. The new
stability analysis is based on operator and boundary perturbation theories and allows
us to treat the Rayleigh–Taylor and Richtmyer–Meshkov instabilities as a single
phenomenon and thus to understand the interrelation between these two funda-
mental instabilities. This leads, in particular, to clarification of the validity of the
original Richtmyer growth rate equation and its crucial dependence on the frame of
reference. The main finding of this study is the revealed and quantified influence of
the interfacial curvature on the growth rates and the wavenumber selection of both
types of instabilities. Finally, the systematic approach taken here also provides a
generalization of the widely accepted ad hoc idea, due to Layzer (Astrophys. J., vol. 122,
1955, pp. 1–12), of approximating the potential velocity field near the interface.

1. Introduction
1.1. What are the interfacial acceleration-induced instabilities?

Interfaces either uniformly (Rayleigh 1883; Taylor 1950) or impulsively (Richtmyer
1960; Meshkov 1969) accelerated are ubiquitous in nature and usually exhibit
long-wave instabilities and are respectively named after Rayleigh–Taylor (RT) and
Richtmyer–Meshkov (RM). In the first case the instability occurs if the light fluid
is accelerating the heavy one, while in the second case the instability takes place
when an interface between fluids of different density is impulsively accelerated,
e.g. by the passage of a shock wave. It is believed, after the work of Richtmyer
(1960), that the occurrence of instability in the latter case does not depend upon
the direction of impulsive acceleration. These two instabilities are usually studied
separately, i.e. without interaction with each other; the known facts on RT and
RM instability phenomena were reviewed by Sharp (1984) and Brouillette (2002),
accordingly. The physical situations in which the RM instability appears span from
combustion (cf. Khokhlov, Oran & Thomas 1999) to astrophysics (cf. Arnett 2000).
The RT instability also occurs in various phenomena, e.g. inertial confinement fusion
(Lindl & Mead 1975), astrophysics (Frieman 1954; Arons & Lea 1976; Cattaneo &
Hughes 1988) and geophysics (Sazonov 1991; Wilcock & Whitehead 1991). Because
of this wide fundamental impact, these classical RT and RM instabilities still attract
attention: in particular, there are a number of works on the nonlinear analysis of
these instabilities, starting with the seminal work of Layzer (1955), who proposed an
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Figure 1. Prosaic examples of Rayleigh–Taylor and Richtmyer–Meshkov instabilities. (a) A
bucket of water with instantaneously removed bottom. (b) A bucket of water dropped on the
floor.

ad hoc approximation of the velocity potential near the tip of a finger leading to a
simple nonlinear model for the finger evolution. This approach has been extended
by Ott (1972), Hecht, Alon & Shvarts (1994), Hazak (1996), Velikovich & Dimonte
(1996) and Mikaelian (1998). Effects of compressibility were studied by Fraley (1986),
Yang, Zhang & Sharp (1994), Mikaelian (1994) and Wouchuk & Nishihara (1996),
to name a few. The latter effect can be important in the RM instability, since it often
occurs in nature due to a shock propagating through an interface. Also, the effects of
viscosity (Carlés & Popinet 2002) and magnetic field (Wouchuk & Nishihara 1996)
on the development of the RM instability have been investigated. Despite numerous
studies and refinements of both the RT and the RM instabilities, the two key aspects –
influence of the frame of reference on the expression for the growth rate and the
interfacial curvature on the development of these instabilities – have never been
pointed out in the literature. These are the subjects of this work, the motivation
for which comes from the recent understanding of the fact that the fundamental
instability, which is responsible for the crown formation in the drop splash problem
(cf. figure 2), is due to the RM mechanism (Krechetnikov & Homsy 2009), as will be
discussed in the next subsection.

Transparent physical examples of both RT and RM instabilities can be given with
the help of a bucket of water, as in figure 1. The RT instability would correspond
to the case in which the bucket bottom is removed instantaneously, and thus, due to
gravity, the water layer is accelerating the air as in figure 1(a); another nice visual
interpretation of the RT instability was given by Sharp (1984), who considered a water
layer plastered to a ceiling. The RM instability would be observed when the same
bucket is dropped on the floor so that due to impact the water undergoes a sudden
impulsive deceleration, as in figure 1(b), and therefore should be stable according to
the RT criterion. However, as we know from experience, the water layer becomes
unstable. The explanation for this discrepancy between the predictions of the RT and
RM criteria comes from the fact that the RM case is the impulsive limit of the RT
case. Namely if the interface between two phases is RT unstable under the action of a
constant acceleration in one of the directions, then it should be RM unstable in both
directions in the non-inertial frame of reference moving with the interface, since in this
reference frame it is equally valid to say that the interface is being accelerated from
the lighter to the heavier phase and vice versa. Mathematically, this is justified by the
fact that the impulsive acceleration, V0δD(t) with δD(t) being the Dirac delta function,
is invariant with respect to the transformation t → −t . Evidently, the view of this
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phenomenon in a laboratory frame of reference is not as simple, which will be also
demonstrated mathematically in § 2. The clarification of these fundamental frame-
dependent properties of the instabilities is naturally important for further studies, in
particular, of the effect of interfacial curvature treated in § 3.

The behaviour in the RT case can be described by the time-evolution equation for
interfacial perturbations f (t), i.e. deviations from the flat interface, of wavenumber k

under constant acceleration g in the coordinate system fixed in the interface

d2f (t)

dt2
= |k| g f (t), (1.1)

which is given for the case in which density of one of the fluids can be neglected,
i.e. for unit Atwood number, AT =(ρ1 − ρ2)/(ρ1 + ρ2) = 1. Apparently, if g > 0, then
the initially non-zero perturbations will grow exponentially in time. Richtmyer (1960)
applied the above Taylor’s analysis to the case of impulsive acceleration g(t) = V0δD(t),
which implies that the interface attains a jump in velocity equal to V0 at the
time instant t =0, i.e. V (t) = V0H (t), where H (t) is the Heaviside step function.
Integrating (1.1) for such an impulsive acceleration yields the famous Richtmyer
growth rate relation

df (t)

dt
= |k| V0 f (0), (1.2)

which predicts linear growth in time, proportional to the initial amplitude of
perturbation f0 and the velocity jump V0. It should be stressed that the Richtmyer
argument was based on the ingenious generalization of Taylor’s result, as developed
in the case in which the perturbation ‘sits’ on the interface, i.e. in the reference frame
moving with the interface. While Richtmyer’s growth rate relation agrees with the
numerical modelling of the compressible case (Yang et al. 1994), which was done in the
moving frame of reference and with no initial velocity perturbations consistent with
Richtmyer’s work, and remains the main theoretical model, it consistently predicts
a growth rate that is too large compared to experiments (Grove et al. 1993). This
discrepancy may be due to either nonlinear effects at long times and/or incomplete
understanding of the linear case for short times. The focus of this paper is on
clarifying the linear theory; namely it will be shown that previous studies were based
on a restricted set of initial perturbations and overlooked difference in growths as
observed in different reference frames. Thus, as we will see in § 2, the analysis of
an impulsively accelerated interface is more complicated than was envisioned by
Richtmyer (1960), since the non-trivial nature of the free-surface problems leads
to different views of the perturbation evolution in the laboratory frame and the
frame moving with the interface, which however can be reconciled (§ 2.6). Also, the
systematic approach developed here allows us to demonstrate that the non-zero initial
displacement f (0) required for instability is not really necessary, as implied by (1.2)
and commonly believed. Because of the time-dependent nature of the basic state – an
accelerated flat interface – as well as an impulsive acceleration at t = 0, our analysis
is based on the Laplace transform methods, since the problem naturally requires
treatment as an initial-value problem.

1.2. Limitations of previous studies and the main result

While historically the RM instability was studied without an extra effect of constant
acceleration (i.e. separately from the RT case), it is intuitively clear that there are no
pure impulsive accelerations in the real world and that they are usually combined
with constant or slowly changing accelerations. Therefore, it is natural to view both
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Figure 2. Example of accelerated curved liquid interface: drop splash on thin film.

instabilities as a single phenomenon. This unified understanding will be given in § 2,
which uncovers the interaction of these two fundamental instabilities.

Another limitation of the studies of the RT and RM instabilities is connected
with the flat-interface base state, in view of its relative ease for analytical treatments.
However, there are many physical situations in which curved interfaces are subject
to acceleration, e.g. in the drop splash problem (Krechetnikov & Homsy 2009) as
illustrated in figure 2. Similar to the depicted case, thin liquid sheets with highly curved
edges, which also experience accelerations, are very frequent in various applications,
but their stability analysis is not yet available (Sirignano & Mehring 2000). As for
the physical origin of impulsive accelerations of such liquid sheets, one mechanism
is suggested by figure 2, in which a rim is formed due to a sudden impact. Another
possibility for impulsive accelerations is due to body forces, which can be switched
on suddenly, such as magnetic and electric fields: they would accelerate not only the
interface, as a shock wave would, but also the whole bulk of the liquid.

Given the above physical justifications, our study of these phenomena in the
two-dimensional configuration, § 3, reveals a non-trivial effect of non-zero interfacial
curvature on the stability characteristics, which can be understood in basic physical
terms. Namely, let us re-derive (1.1) for the evolution of an interfacial disturbance
of wavenumber k for flat interface, using energy argument. Consider a perturbation
of wavenumber k and the liquid column of thickness dx as dark shaded in figure 3.
When the interface is deflected from the flat one, y = 0, this liquid column respectively
attains the changes

�Πg =
1

2
gρf 2 dx and �T � 1

2
ρ|k|−1

(
df

dt

)2

dx (1.3)

in potential and kinetic energies, where in the kinetic energy expression we took into
account that the perturbation penetrates into the bulk at the distance |k|−1, which is
dictated by the solution of Laplace’s equation for the velocity potential φ ∼ e|k|y+ikx
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Figure 3. Interface between two fluids.

in a half-space, (x, y) ∈ � × �+ (cf. (2.11)). Thus, the energy form of (1.1) is(
df

dt

)2

+ |k|gf 2 = const, (1.4)

and therefore the factor |k| in (1.1) and (1.2) originates from the kinetic energy term.
In the case of a curved interface the penetration of a disturbance into the bulk
changes, and thus the factor |k| should be replaced with a function of both the
wavenumber k and the base-state curvature, which affects not only the perturbation
growth rate but also the wavenumber selection. However, formal analysis in this case
is more complicated than in the flat-interface base-state case and requires accurate
techniques to solve for the velocity potential in a region with curved free boundaries.
Resolving this technical difficulty naturally leads to a rigorous generalization of the
linear part of the ad hoc argument of Layzer (1955), which will be discussed in
detail in § 3. Also, intuition regarding the effect of an interfacial curvature developed
here will be substantiated by the known example of collapsing underwater bubbles
(Birkhoff 1954; Plesset 1954). Finally, the two-dimensional studies will be generalized
to three dimensions in § 4. The main results of physical significance are summarized
in Assertions 1–4 throughout the text and in brief can be stated as follows.

The interpretation and the growth rate of the Richtmyer–Meshkov instability
depend on the frame of reference. The interfacial curvature and its sign influence the
growth rates of both the Rayleigh–Taylor and Richtmyer–Meshkov instabilities, as
well as the most unstable wavenumber range selection in the transverse direction in
the three-dimensional case.

2. Two-dimensional flat interfaces
2.1. General formulation

In the analysis of the RT and RM instabilities we adopt the Kelvin’s restrictive
assumption (Drazin & Reid 2004); i.e. we consider an inviscid and incompressible
approximation of irrotational fluids. One can demonstrate that rotational disturbances
are no more unstable in the RT case, similar to the argument in chapter 4 of Drazin &
Reid (2004); in the RM case, the flow is potential right after the sudden acceleration,
since the viscous and inertia forces are not capable of balancing the sudden changes
similar to the disk impact problem (Batchelor 1967). Also, as a consequence of the
inviscid approximation, the surface tension σ must be taken as constant, since there
are no viscous stresses to balance surface tension gradients, i.e. Marangoni stresses
(Landau & Lifshitz 1987).
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First, consider the two-dimensional configuration of an interface between two fluids
in a gravity field g, as in figure 3. For simplicity of notation, we consider phase 2
inertialess, while the bulk dynamics in phase 1 are governed by the Euler equations
of incompressible fluid of density ρ. In the laboratory Cartesian coordinate frame of
reference (i, j) these equations are

∇ · u = 0, (2.1a)

ut + (u∇)u = − 1

ρ
∇p + f , (2.1b)

where u = i u+ j v is the velocity field; p is the pressure; and f is the mass force equal
to the gravitational acceleration, i.e. f = − j g. Since the stress tensor Tij = −pδij is
inviscid, the only dynamic condition at the interface left is its normal component

[n · T · n]21 = σ∇n,

where n is the normal unit vector pointing into phase 2. Finally, the system is
completed with the kinematic condition, which can be written most conveniently
using an implicit representation of the interface, F = y − f (t, x):

∂F

∂t
+ ∇F · u = 0 =⇒ ∂f

∂t
+ u

∂f

∂x
= v on y = f (t, x). (2.2)

Let us also write the dynamic condition in coordinates. If the normal and tangential
vectors in the Cartesian coordinates (i, j ) are

n =
∇F

|∇F | =
−ifx + j√

1 + f 2
x

and t =
i + jfx√
1 + f 2

x

, (2.3)

respectively, then both (i, j ) and (t, n) are right-handed coordinate systems. The
normal component of the dynamic condition at the interface becomes

p = − σfxx(
1 + f 2

x

)3/2
at y = f (t, x). (2.4)

Adopting Kelvin’s restrictive assumption that the disturbances flow is irrotational,
we introduce the potential φ such that u = ∇φ, which results in the following system
for the bulk (the harmonic equation for the potential φ and the Lagrange–Cauchy
integral for the pressure p) and interfacial dynamics (the normal stress and kinematic
conditions):

bulk (velocity) y � f (t, x) :

{
�φ = 0,

∇φ → 0, y → −∞,
(2.5a)

bulk (pressure) y � f (t, x) :
∂φ

∂t
+

1

2

(
φ2

x + φ2
y

)
= − 1

ρ
p − g · y + C(t), (2.5b)

interface (dynamic) y = f (t, x) : p = − σfxx(
1 + f 2

x

)3/2
, (2.5c)

interface (kinematic) y = f (t, x) :
∂f

∂t
+

∂φ

∂x

∂f

∂x
=

∂φ

∂y
, (2.5d)

where �= ∂2
x + ∂2

y is the Laplacian and C(t) is the time-dependent constant in the
Lagrange–Cauchy integral (2.5b) to be determined in § 2.2.
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2.2. Base state

System (2.5) allows us to determine the base state corresponding to the interface,
which starts moving with velocity j · V (t) (i.e. in the positive direction of the y-axis)
at the initial time instant t = 0:

f 0(t) =

∫ t

0

V (̃t) d̃t; (2.6)

that is there is no x-dependence in view of the flatness of the base-state interface. The
kinematic condition (2.5d) then yields the potential function φ0 = V (t)y + α(t) with
some arbitrary time-dependent constant α(t). Since the pressure at the unperturbed,
i.e. flat, interface f 0(t) vanishes, cf. (2.5c), the constant C(t) is given by

C(t) =
dα

dt
+

(
g +

dV

dt

)
f 0 +

V 2

2
. (2.7)

The Lagrange–Cauchy integral then produces the formula for the base-state pressure

p0 = −ρ

(
g +

dV

dt

)
(y − f 0). (2.8)

2.3. Linearized equations for disturbances

Introducing linearization around the base state p = p0(t, y)+p′(t, x, y), φ =φ0(t, y)+
φ′(t, x, y) and the undisturbed interfacial position f = f 0(t) + f ′(t, x), we get the
following equations for the evolution of disturbances:

∂φ′

∂t
+ V φ′

y = − 1

ρ
p′, y � f 0, (2.9a)

−ρ

(
g +

dV

dt

)
f ′ + p′|y=f 0 = −σf ′

xx, y = f 0, (2.9b)

∂f ′

∂t
=

∂φ′

∂y
, y = f 0, (2.9c)

while the velocity potential is determined from the free-boundary problem for the
Laplace equation:

�φ′ = 0, y � f 0, (2.10a)

∇φ′ → 0, y → −∞. (2.10b)

Note that in (2.5c) we linearized the pressure in an obvious manner:

p(t, x, f 0(t) + f ′(t, x)) = p0(t, f 0(t) + f ′(t, x)) + p′(t, x, f 0(t) + f ′(t, x))

= p0(t, f 0(t)) +
∂p0

∂y
(t, f 0(t)) f ′(t, x) + p′(t, x, f 0(t)) + . . . ,

which leads to (2.9b).

2.4. Stability analysis

Let us denote the Fourier transform of φ′(t, x, y) in x-variable by F(φ) = φ̂(t; k; y) =∫ +∞
−∞ φ′(t, x, y) e−ikx dx, dropping the prime superscript and, similarly, the Laplace

transform in time of φ′(t, x, y) by L(φ) = φ̃(s; x, y) =
∫ +∞

0− φ′(t, x, y) e−st dt . Then the

combined Fourier–Laplace transform of φ′(t, x, y) will be denoted by φ(s; k; y). The
same notation applies to f ′(t, x) and p′(t, x, y).
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The solution of (2.10) satisfying the boundary condition at y → −∞ in the Fourier–
Laplace space is

φ(s; k; y) = A(s; k)e|k|(y−sf̃ 0), y � s f̃ 0. (2.11)

It is important to stress that since we are studying the stability of the free-boundary
problem we need a general solution of the Laplace equation (2.10) but not a particular
solution with some fixed boundary values. This will have non-trivial implications in
§ 3, when we will need to construct an analogous solution but in a domain with
a curved boundary. Lastly, it is important to note that the solution decays away
from the interface exponentially, ∼e|k|y , which will also result in some non-trivial
consequences in § 2.5.

Applying the Fourier–Laplace transform to system (2.9), we obtain

sφ − φ̂(0; k; y) + L
[
V (t)

∂φ̂

∂y
(t; k; y)

]
= − 1

ρ
p, y � s · f̃ 0, (2.12a)

−ρgf − ρL
[
dV (t)

dt
f̂ (t; k)

]
+ p = σk2f , y = s · f̃ 0, (2.12b)

sf − f̂ (0; k) =
dφ

dy
, y = s · f̃ 0, (2.12c)

where f̃ 0 is the Laplace transform of f 0(t).
In this work we are interested only in two limiting situations, namely the impulsive

acceleration V (t) = V0H (t) and the constant acceleration, described by g =const.
Then the Laplace transforms in (2.12a) and (2.12b) become L[V (t) ∂φ̂

∂y
(t; k; y)] = V0

dφ

dy

and −ρL[ dV (t)
dt

f̂ (t; k)] = −ρV0f̂ (0; k), respectively. Next, after substituting the general
solution for the potential (2.11) into (2.12), evaluating (2.12a) at the interface and
resolving (2.12) for the amplitude A(s; k) by eliminating pressure p and the interface
f disturbances, we find

A(s; k) =
s[φ̂(0; k; f 0) − V0f̂ (0; k)] −

[
σ k2

ρ
+ g

]
f̂ (0; k)

s2 + |k|
[
σ k2

ρ
+ g + sV0

] . (2.13)

In order to analyse the asymptotic stability of the original physical system it is not
necessary to invert the Fourier and Laplace transforms, but rather one can appeal to
the pole diagram analysis, which allows one to determine the long-time behaviour of

φ(t, x, y) based on the knowledge of the location of all the singularities of φ̂(s; k; y)
in the s-complex plane (Lawrentjew & Schabat 1967). Namely, the rightmost simple
poles (i.e. those with largest real part) have the dominant influence on the long-term
behaviour of φ(t, x, y) by dictating the exponential rate of evolution (be it growth or
decay); if the rightmost poles are multiple, then algebraic growth is possible; if the
real part of the rightmost pole is zero, then nonlinear stability analysis is required.
The practical efficiency of this method is that the real part of the coordinate of the
rightmost pole is the growth rate λ in the terminology of the standard normal mode
(i.e., eigenvalue) analysis; moreover, this approach allows one to capture the algebraic

growth as well, while the normal mode analysis fails. Since φ̂(0; k; 0) and f̂ (0; k) are
the initial perturbations in the Fourier space and, in general, arbitrary, then finding
poles amounts to the consideration of the vanishing denominator in (2.13) in two
situations, when the acceleration is either constant or impulsive:
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(a) V0 = 0: s2 + |k|[σ k2

ρ
+ g] = 0 implies that the poles are s1,2 = ±

√
−|k|(σ k2

ρ
+ g);

i.e. instability takes place for σ k2

ρ
+ g < 0; in other words, g must be less than zero so

that there is a range of wavenumbers k, controlled by surface tension, for which the
disturbances grow. This is exactly the classical result of Taylor (1950). The rightmost
of the above s1,2 corresponds to the real part of the leading eigenvalue λ, which
controls the time growth eλt and which is shown as the solid curves in figure 9.
Equivalently, one can consider the case dV/dt = a = const, which gives the same
results as above but with g → g + a.

(b) V0 
= 0: s2 + |k|[σ k2

ρ
+ g + sV0] = 0 implies that the poles are located at

s1,2 =
−|k|V0 ±

√
k2V 2

0 − 4|k|
(
σ k2

ρ
+ g

)
2

, (2.14)

from which it follows that
(i) if g < 0, then linear instability with exponential growth takes place for any V0;
(ii) if V0 < 0, then one has linear instability with exponential growth;
(iii) if V0 > 0 then one has linear stability for non-zero σ or positive g, and nonlinear

stability analysis is required if both σ and g vanish.
From the above the asymmetry of the cases V0 < 0 and V0 > 0 is apparent; also
the additional effect of constant (not sudden) acceleration is highlighted, which, as
one can observe, leads to a non-trivial interaction of the RT and RM instabilities.
Also, the presence of surface tension provides stabilization of short wavelengths, as
expected. Finally, the growth or decay of the interfacial perturbations is dictated by
the stability characteristics of A(s, k) as can be seen from

f (s; k) =
1

s
[f̂ (0; k) + A(s; k)|k|] (2.15)

because the singularities, which control the growth or decay, are the same as those of
A(s; k) discussed above.

Now let us consider the limiting case in which both constant acceleration, g, and
surface tension, σ , vanish, i.e. the situation considered originally by Richtmyer (1960).
Then the amplitude of the potential and the interfacial perturbations obey

A(s; k) =
−V0f̂ (0; k) + φ̂(0; k; f 0)

s + |k|V0

, f (s; k) =
sf̂ (0; k) − |k|φ̂(0; k; f 0)

s(s + |k|V0)
, (2.16)

respectively. It is remarkable that the results of the above systematic analysis differ
from the standard ad hoc conclusions of Richtmyer (1960), who predicted that
perturbations should grow algebraically (linearly) in time regardless of the sign of V0,
while our analysis predicts exponential growth for V0 < 0, as follows from (2.16). In
order to resolve this discrepancy, let us analyse the perturbation growth in the frame
of reference moving with the interface, since historically Richtmyer adopted Taylor’s
analysis on a moving interface to the case of impulsive acceleration.

2.5. Analysis in the frame of reference moving with interface

Let us transform our system to the one moving with the interface with velocity
j · V (t), i.e. in the positive y-direction:

(x, y, t) →
(

ξ = x, η = y −
∫ t

0

V (̃t) d̃t, τ = t

)
, (2.17a)

(u, v) → (ũ = u, ṽ = v − V (t)), (2.17b)
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where the tildes stand for the variables in new frame of reference (not to be mixed with

the Laplace transform). Then the potential function φ transforms into φ̃ = φ − V (t) η,
where we put the arbitrary time-dependent constant of integration to zero without
loss of generality. Also, the partial derivatives are transformed according to

∂x = ∂ξ , ∂y = ∂η, ∂t = ∂τ − V ∂η. (2.18)

Since V (t) is not constant, in general, this new coordinate system is non-inertial, and
the nonlinear system (2.5) becomes

bulk (velocity) η � f̃ (τ, ξ ) :

{
�φ̃ = 0,

∇φ̃ → 0, η → −∞,
(2.19a)

bulk (pressure) η � f̃ (τ, ξ ) :
∂φ̃

∂τ
+

|∇φ̃|2
2

= − 1

ρ
p −

(
g +

dV

dτ

)
η + C(τ ),

(2.19b)

interface (dynamic) η = f̃ (τ, ξ ) : p = − σ f̃ ξξ(
1 + f̃ 2

ξ

)3/2
, (2.19c)

interface (kinematic) η = f̃ (τ, ξ ) :
∂f̃

∂τ
+

∂φ̃

∂ξ

∂f̃

∂ξ
=

∂φ̃

∂η
, (2.19d)

where ∇ = i ∂ξ + j ∂η; f̃ = f (t, x) −
∫ t

0
V (̃t) d̃t is the position of the interface in new

coordinates; and purely time-dependent terms, namely V 2/2, are absorbed into the
constant C(τ ), (Equivalently, those terms can be absorbed in the pressure.) Since the

base state corresponds to p0 ≡ 0 at η = 0 and to φ̃0 ≡ 0 and f̃ 0 ≡ 0, then C(τ ) = 0,
and the pressure in the bulk is p0 = −ρ (g + dV/dt) η. Imposing perturbations on this

base state, p = p0 + p′, φ̃ = φ̃0 + φ̃′, f̃ = f̃ 0 + f̃ ′ and linearizing the corresponding
equations (2.19), we arrive at the analogue of (2.9), but now in the non-inertial frame

∂φ̃′

∂τ
= − 1

ρ
p′, η � 0, (2.20a)

−ρ

(
g +

dV

dτ

)
f̃ ′ + p′|η=0 = −σ f̃ ′

ξξ , η = 0, (2.20b)

∂f̃ ′

∂τ
=

∂φ̃′

∂η
, η = 0. (2.20c)

As usual, the velocity potential is determined from the free-boundary problem for the
Laplace equation:

�φ̃′ = 0, η � 0, (2.21a)

∇φ̃′ → 0, η → −∞. (2.21b)

Clearly, (2.21) produces φ =A(s; k)e|k|η in the Fourier–Laplace space, where we
adopted the notational conventions of § 2.4. It is notable that system (2.20) differs

from system (2.9) in the laboratory frame by the absence of a convective term, V φ̃′
y , in

the Lagrange–Cauchy integral (2.20a). This difference leads to substantially different
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stability results as can be seen from the resulting amplitude

A(s; k) =
s(φ̂(0; k; 0) − V0f̂ (0; k)) −

[
σ k2

ρ
+ g

]
f̂ (0; k)

s2 + |k|
[
σ k2

ρ
+ g

] , (2.22)

which is obtained in the manner similar to that in § 2.4. While the reader can easily
perform a general stability analysis analogous to the one in § 2.4, let us consider in
detail the pure RM case, i.e. when constant acceleration and surface tension effects
are absent. This leads to the following velocity potential amplitude and interfacial
perturbation in the Fourier–Laplace space:

A(s; k) =
−V0f̂ (0; k) + φ̂(0; k; 0)

s
, f (s; k) = |k| φ̂(0; k; 0) − V0f̂ (0; k)

s2
+

f̂ (0; k)

s
.

(2.23)

As one can immediately infer from the first of these equations, the velocity potential
is stable for any V0. However, since L−1[s−2] = t , the interface is linearly unstable
with linear algebraic growth in agreement with the analysis of Richtmyer (1960).
But, contrary to the conclusion of Richtmyer (1960), the growth rate is determined

not only by V0f̂ (0; k) (cf. (1.2)) but also by the initial perturbation of the velocity

potential φ̂(0; k; 0). The final question left is what are the reasons for the paradoxical
difference in the stability results between moving frame of reference discussed in this
section and the laboratory frame of reference analysed in § 2.4.

2.6. Resolution of the paradox

The resolution of the above paradox was actually given in the introduction: an
observer moving with an interface does not discern whether the interface is accelerated
or decelerated, while in the laboratory frame of reference the difference is obvious,
which leads to the anisotropy. Below, we develop further intuition about this curious
fact.

Let us use the index ‘i ’ for the variables in the laboratory (inertial) frame of
reference and ‘n ’ for the variables in the moving (non-inertial) frame of reference.
Clearly, the only difference between systems (2.9) and (2.20) – the presence of the extra
convective term in (2.9a) – is the result of the transformation (2.17a). It is notable that
the kinematic conditions (2.5d) and (2.20c) are not affected by this transformation in
view of the absence of y-dependence. It is the goal of this subsection to reveal, with
the help of simple examples, how this convective term may affect the growth rate
measured in different frames of reference.

First, one can observe from the dependent variable transformation (2.17b) that
perturbations in both coordinate frames of reference are equal at a given point in
space–time,

f ′
i = f̃ ′

n, φ′
i = φ̃′

n,

as it should be: but this only adds more intrigue to the question as to why the time
evolution of perturbations in these two frames are different. In order to appreciate
this fact, let us consider a model problem in the laboratory frame,

∂ϕ

∂t
+ V

∂ϕ

∂y
= λϕ, V = const, (2.24)

and look for a solution in the form ϕ(t, y) = A(t)e|k|y , recalling the special structure of
the velocity potential solutions in our case (2.11). Then the time evolution is dictated
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Figure 4. On a physical interpretation of the difference between growth rates in the laboratory,
at y = 0, and moving, at η = 0, frames of reference for the solution of the model (2.24),
ϕ(t, y) = e(λ−|k|V )tey . Three solution curves correspond to three different times, t = 0, �t, 2�t .

by the evolution of the amplitude A,

dA

dt
= (λ − |k|V )A, (2.25)

so that ϕ ∼ e(λ−|k|V )tey . If, however, we transform to the frame of reference moving
with speed V in y-direction,

(t, y) → (τ = t, η = y − V t);

then equation (2.24) becomes

∂ϕ

∂τ
= λϕ, (2.26)

and therefore the growth rate in the (τ, η)-frame of reference is different, i.e. λ versus
λ − |k|V . The solution for the amplitude B(τ ) of φ(τ, η) = B(τ )e|k|η is B(τ ) ∼ eλτ , i.e.
ϕ(τ, η) ∼ eλτe|k|η. However, it is obvious that the solutions are the same, but because of
the special y-structure of the solution, i.e. the structure in the direction of translation
of the frame of reference, the growth is seen differently in different frames of reference.
This fact can be most easily appreciated with the help of a graphical interpretation in
figure 4: if one measures the growth rate in the laboratory (t, y) frame of reference,
e.g. at the location y =0 (arrow 1), then the growth rate is λ − |k|V , while if one
moves with speed V in y-direction, then one measures the growth rate λ along the
arrow 2. Again, this phenomenon is due to the exponential spatial y-structure of the
solution, which makes it possible to add to or subtract from the exponential growth
rate in time. One can imagine a situation in which the growth rate in time equals
to and thus cancels the spatial growth rate of the solution in y-direction, as is the
case for the RM instability and as illustrated by the example below. In this case
the growth rate is not exponential anymore, i.e. dϕ/dt ∼ ϕ(0), but may be algebraic
due to linear amplification of non-zero initial conditions, ϕ ∼ ϕ(0) · t . The graphical
interpretation in figure 4 also makes the origin of the asymmetry of the RM instability
in the laboratory frame (i.e. the dependence of the growth rate on the sign of the
shock velocity V0, cf. § 2.5) apparent: the observed growth rate depends on the sign
of the velocity of the frame of reference. Namely, if the growth rate is isotropic in a
particular frame, then it becomes anisotropic in the moving frame of reference. The
above discussion reveals the effect of the Galilean part of the transformation (2.17a),
while the contribution of the non-Galilean part – an impulsive acceleration – remains
to be understood. One obvious effect of the non-inertial contribution is the origin of
the isotropy of the RM instability in the frame of reference moving with the interface,
as explained at the very beginning of this subsection: it follows from the symmetry
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of the Dirac delta function, δD(−t) = δD(t), since an observer sitting at a suddenly
accelerated interface cannot discriminate between acceleration and deceleration.

In order to illustrate the fact that the growth can be algebraic in one reference
frame and exponential in the other let us generalize example (2.24) to

∂ϕ

∂t
+ V

∂ϕ

∂y
= |k|V ϕ + f, V = const,

∂f

∂t
= 0.

If the solution, similar to our problem, has the structure ϕ = A(t)e|k|y, f = B(t)e|k|y ,
then the reader can easily find that the solution for A(t) will be growing algebraically
in the original reference frame while exponentially in the reference frame moving with
velocity V .

What implications do the above examples have for the observation of the RM
instability? For example, the drop splash problem develops the fingering instability –
the famous crown – which is observed in the laboratory frame of reference (cf.
figure 2). One can name a multitude of other physical phenomena, where the RM
instability is important from the point of view of the laboratory observer but not the
one who ‘sits’ on the interface. In this regard, the RT instability is also affected by
this phenomenon of the different view of instability in the laboratory and coordinate
frame moving with constant velocity, as one can observe from (2.13) and (2.22);
however, if the reference frame is moving with the interface, i.e. accelerating, then
the stability analyses are identical in both frames of reference for the RT case: the
classical result of Taylor remains intact.

Finally, let us make an observation that in the laboratory frame both the velocity
potential and the interface perturbation grow, as discussed in § 2.4, while in the moving
frame of reference one of these may grow and the other may not, as we observed in
§ 2.5. To appreciate this basic fact in simple terms, let us consider system (2.9), i.e. in
the laboratory frame, with vanishing g and σ and in the wavenumber space but with
V (t) of general time dependence, and look for the velocity potential solutions in the

form φ̂(t, y) = A(t)e|k|(y−f 0). This results in a simple model problem

df̂

dt
= |k|A(t),

dA

dt
+ |k|V A = −dV

dt
f̂ .

Clearly, one of the first integrals of the above system, A + V f̂ = const, demonstrates

that if either A or f̂ grows or decays, then so does the other if V = const 
= 0. This is
not the case in the moving frame of reference, as the analogous simplified analysis of
(2.20) shows.

The result of this section on the stability of flat interfaces can be summarized as
follows.

Assertion 1. While the growth rate in the RT instability does not depend upon
whether the phenomena are considered in the laboratory or accelerating with the
interface frames of reference, the growth rate of the RM instability is algebraic in the
frame moving with the interface and exponential in the laboratory frame of reference.
The anisotropy of the RM instability with respect to the direction of the impulsive
acceleration reveals itself only in the laboratory frame as opposed to the moving frame.
In the pure RM case (no constant acceleration and surface tension effects), the system
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Figure 5. Curved interface as an O(ε) perturbation.

is exponentially unstable when the impulsive acceleration is directed towards lighter fluid
and requires nonlinear stability analysis in the reversed situation.

Finally, it is worth mentioning that this effect has been masked by the natural
limitations of current experimental accuracy and the O(t2) difference between linear
y(t) = y(0)(1 + λt) and exponential y(t) = y(0) eλt growths. In fact, there are just a
few experimental measurements for small times, i.e. when one can expect the linear
mechanisms to govern the dynamics. For example, the data of Jones & Jacobs (1997)
for low Mach numbers (figure 5 in their work) can be attributed to the linear (versus
nonlinear) regime of the perturbation evolution at the most up to the times t ∼ 2 ms
and thus do not allow one to distinguish linear algebraic from exponential growth
due to the experimental scatter.

3. Two-dimensional curved interfaces
Since true base-state interfaces are frequently not flat and sometimes highly curved,

such as the liquid rims discussed in the introduction, it is natural to explore possible
deviations of the stability characteristics from those in the flat-interface case. Given
the above understanding of the difference between observations in the laboratory
and moving coordinate frames, from now on we choose to work in the frame of
reference moving with an interface. Thus the starting point of the stability analysis of
curved interfaces is system (2.19), and the key idea in this section is to consider the
curved interface locally, as depicted in figure 5, with small deviation from flatness, i.e.

f̃ (τ, ξ ) = εh(τ, ξ ) with ε � 1.
In what follows, for convenience, we will work with non-dimensional variables,

which are introduced without new notations via (ξ, η, f̃ ) → L(ξ, η, f̃ ), τ → (L/a)1/2τ ,

φ̃ → L3/2a1/2φ̃, V → (L a)1/2V , p → ρL a p, g → ag, where L is the characteristic
length scale of the physical system, e.g. capillary length

√
σ/ρa for liquid rims, and

a > 0 is a suitable constant acceleration, e.g. in the pure RT case a = |dV/dτ |. As
a result of this non-dimensionalization, the effect of surface tension is expressed in
terms of the Bond number Bo = ρL2a/σ .

3.1. Base state

As one can infer from system (2.19), there exists a base-state solution of the following
system:

∂φ̃

∂τ
+

|∇φ̃|2
2

= Bo−1 f̃ ξξ(
1 + f̃ 2

ξ

)3/2
−

(
g +

dV

dτ

)
f̃ + C(τ ), (3.1a)

∂f̃

∂τ
+

∂φ̃

∂ξ

∂f̃

∂ξ
=

∂φ̃

∂η
, (3.1b)
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Figure 6. On constructing the potential function by the boundary perturbation method.
(a) Semi-infinite flat column. (b) Semi-infinite column with curved tip.

which is motionless, φ̃0 = 0, and steady, f̃ 0(ξ ), if the conditions of static equilibrium
are met, i.e.

Bo−1 f̃ ξξ(
1 + f̃ 2

ξ

)3/2
−

(
g +

dV

dτ

)
f̃ + C = 0, (3.2)

where constant C is independent of time. Obviously, in this formulation, surface
tension is required for the interface to have a non-zero curvature. In the RT case,
dV/dτ = const allows the corresponding balance of the capillary and hydrostatic

pressures. In the RM case, i.e. when V (τ ) = V0 H (τ ), we have f̃ (τ, ξ ) ≡ f̃ 0(ξ ) and
φ(τ, ξ, η) ≡ 0 for τ � 0. For τ > 0, these are also the solutions, since we have already
transformed to the frame of reference moving with velocity V (τ ). In other words,
we consider the interface and the bulk within it (at least in the very neighbourhood
of the interface with the highest curvature) as moving translationally with V (τ ) as a
single whole.

The final question is the existence of an interface with a non-zero curvature. While
(3.2) can be reduced to quadratures, the existence of such surface with non-zero

second derivative f̃ ξξ can be demonstrated by substituting an even power series
representation,

f̃ 0(ξ ) = εh0(ξ ) = ε

∞∑
i=1

c2iξ
2i , (3.3)

and showing that there is a non-trivial solution for the coefficients, c2i .

3.2. Construction of the potential function

As it was pointed out in § 2.4, it is important to be able to construct a general solution
of the Laplace equation with non-fixed boundary values:

�φ = 0,

η = εh(ξ ) : φ = Φ(ξ ),
(3.4)

where Φ(ξ ) is an arbitrary summable function to be determined from the free-
boundary conditions. Without loss of generality, let the width of the domain be 2π (in
non-dimensional coordinates, cf. figure 6). If one restricts the consideration to even
functions h(ξ ), then, for example, reasonable approximations are εh0(ξ ) � −ξ 2/(2R0),
where R0 � π is the radius of curvature, or h0(ξ ) = cos ξ − 1. The key idea is to
consider the region in the neighbourhood of the interface with the largest curvature,
as sketched in figure 5, and construct the most general velocity potential, which
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satisfies the Laplace equation in this region and allows one to solve the free-boundary
problem. This constitutes the essence of the local approach. Since we are interested in
a small, O(ε), perturbation of the boundary (cf. figure 5), it is natural to appeal to
the boundary perturbation method (although another more cumbersome approach
would be to use the conformal mapping technique). The basic idea of this method
(Dyke 1975) is to transform the boundary conditions on the perturbed boundaries to
that on the unperturbed boundaries, which are known.

Therefore, consider a sequence of two problems, a semi-infinite flat column and a
semi-infinite column with a curved tip, sketched in figures 6(a) and 6(b). First, we
expand the potential function in powers of ε:

φ(ξ, η) = φ(0) + ε φ(1) + . . . , (3.5)

where time dependence is suppressed for a moment, since at this stage we are
constructing a solution to the Laplace equation. Second, we expand the solution at
the boundary:

φ(ξ, η)|η=εh(ξ ) = φ(ξ, 0) + εh(ξ )
∂φ

∂η
(ξ, 0) + . . . . (3.6)

Then, approximating the solution of (3.4), we get two problems, for the zero- and
first-order approximations:

zero order:

�φ(0) = 0,

η = 0 : φ(0) = Φ(ξ ),
(3.7)

first order:

�φ(1) = 0,

η = 0 : φ(1) = h(ξ ) ∂φ(0)

∂η
(ξ, 0).

(3.8)

The zero-order approximation (3.7) yields

φ(0)(ξ, η) =

+∞∑
n=−∞

A(0)
n e|n|ηeinξ , (3.9)

where the amplitudes A(0)
n are found from the boundary condition at η = 0:

φ(0)(ξ, 0) = Φ(ξ ) =
∑+∞

n= −∞ A(0)
n einξ . Since Φ(ξ ) is summable, ∂φ(0)/∂ξ is summable

(convergent) as well. Then, the first-order approximation (3.8) produces the analogous
solution

φ(1)(ξ, η) =

+∞∑
n=−∞

A(1)
n e|n|ηeinξ , (3.10)

where the amplitudes A(1)
n are found from the boundary condition at η = 0, that is

by equating
∑+∞

n= −∞ A(1)
n einξ = h(ξ )

∑+∞
n= −∞ A(0)

n |n|einξ . For example, if h(ξ ) = cos ξ − 1,
then

A(1)
n = A(0)

n +
1

2

{
(n − 1)A(0)

n−1 + (n + 1)A(0)
n+1

}
. (3.11)

The main conclusion is that despite the fact that the boundary is curved, as in fig-
ure 6(b), finite Fourier modes einξ constitute a complete set of functions and thus
allow one to build the solution to (3.4), which from now on will be represented in the
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general form,

φ(τ, ξ, η) =

+∞∑
n=−∞

An(τ )e|n|ηeinξ , (3.12)

where we restored time dependence previously suppressed. In this context, it is natural
to comment on the ad hoc idea of Layzer (1955), which provided a breakthrough in the
nonlinear modelling of the RT and RM instabilities. Layzer suggested approximating
the potential function by φ(τ, ξ, η) = A(τ )eη cos ξ near the tip of the bubble, which,
apparently, is just one harmonic with n= 1 out of the general expression (3.12) and
which allowed him to derive a nonlinear evolution equation for the bubble amplitude
A(τ ). Using more terms from (3.12) one can get a more accurate nonlinear model.

3.3. Linearized equations

The equations for perturbations linearized around the curved non-perturbed interface

f̃ 0(ξ ) in the frame moving with the interface are given by

∂φ̃′

∂τ
= −p′, η � f̃ 0(ξ ), (3.13a)

−
(

g +
dV

dτ

)
f̃ ′ + p′ = −Bo−1

[
f̃ ′

ξξ(
1 + f̃ 0 2

ξ

)3/2
− 3

f̃ 0
ξ f̃

0
ξξ(

1 + f̃ 0 2
ξ

)5/2
f̃ ′

ξ

]
, η = f̃ 0(ξ ), (3.13b)

∂f̃ ′

∂τ
+

∂f̃ 0

∂ξ

∂φ̃′

∂ξ
=

∂φ̃′

∂η
, η = f̃ 0(ξ ). (3.13c)

Since f̃ 0(ξ ) = εh0(ξ ), keeping the terms up to O(ε) and excluding pressure in (3.13),
we arrive at the following system of two equations at η = εh0(ξ ):

∂φ̃′

∂τ
= −

(
g +

dV

dτ

)
f̃ ′ + Bo−1f̃ ′

ξξ + o(ε), (3.14a)

∂f̃ ′

∂τ
= −ε

∂h0

∂ξ

∂φ̃′

∂ξ
+

∂φ̃′

∂η
. (3.14b)

It is natural to expect that the term of O(ε) should introduce a non-trivial correction
to the results of § 2.

3.4. Stability analysis: the RT case

For the sake of mathematical clarity, let us first consider the case of the RT instability,
i.e. dV/dτ = −1, since we are interested in the unstable configuration. In this case,
system (3.14) contains no explicit time dependence, and therefore one can perform
the standard eigenvalue analysis,

(φ̃′(τ, ξ ), f̃ ′(τ, ξ )) → (Φ(ξ ), F (ξ )) eλτ , (3.15)

which, after eliminating F (ξ ), produces

λ2Φ = −(g − 1)
[
Φη − h0

ξΦξ

]
+ Bo−1

[
Φξξη − h0

ξξξΦξ − 2h0
ξξΦξξ − h0

ξΦξξξ

]
. (3.16)

Next, the analysis is based on the well-established operator perturbation theory (Kato
1966), which allows one to treat this problem as a regular (non-singular) perturbation
problem,

Φ(ξ ) = Φ0 + εΦ1 + o(ε), λ = λ0 + ελ1 + o(ε), (3.17)
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which yields

ε0 : λ2
0Φ

0 + (g − 1)Φ0
η − Bo−1Φ0

ξξη = 0, (3.18a)

ε1 : λ2
0Φ

1 + (g − 1)Φ1
η − Bo−1Φ1

ξξη = −2λ0λ1Φ
0 + (g − 1)h0

ξΦ
0
ξ

− Bo−1
[
h0

ξξξΦ
0
ξ + 2h0

ξξΦ
0
ξξ + h0

ξΦ
0
ξξξ

]
. (3.18b)

Based on the results of § 3.2, potentials are given by

Φi(ξ, η) =

+∞∑
n=−∞

Ai
ne

|n|ηeinξ . (3.19)

Then, substituting the zero-order approximation Φ0(ξ, η) in (3.18a), evaluating at
η = 0 and projecting onto eimξ yields

λ2
±0 = −(g − 1)|n| − Bo−1|n|3, (3.20)

which is the dispersion relation governing the stability of a two-dimensional column
with a flat top, as in figure 6(a). Next, substitution of Φ1(ξ, η) into (3.18b) and
projection† onto eimξ leads to vanishing of the left-hand side of (3.18b) in view of the
definition of the zero-order eigenvalue (3.20), while the rest of (3.18b) results in

4πλ0λ1A
1
m =

∑
n

A1
n

∫ π

−π

{
in(g − 1)h0

ξ − Bo−1
[
inh0

ξξξ − 2n2h0
ξξ − in3h0

ξ

]}
ei(n−m)ξ dξ .

Since φ̃′(τ, ξ ) is real, thus making Φi(ξ, η) real as well, A−r =Ar and thus expansions
(3.19) contain only cosines. Since h0(ξ ) and h0

ξξ (ξ ) are even functions of ξ , with h0
ξ (ξ )

and h0
ξξξ (ξ ) being the odd functions, integrals involving h0

ξ (ξ ) and h0
ξξξ (ξ ) should

vanish. The only terms left are

4πλ0λ1A
1
m = 2Bo−1

∑
n

A1
n

∫ π

−π

n2h0
ξξe

i(n−m)ξ dξ . (3.21)

Since we perform the local analysis, h0
ξξ � κ = const is the scaled O(1) curvature, and

based on (3.21), the first approximation for the eigenvalue becomes

λ
(n)
±1 � Bo−1 n2

λ
(n)
±0

∫ π

−π

h0
ξξ dξ, (3.22)

where we used the orthogonality of the Fourier modes, einξ . Note that if the interface
is non-symmetric, i.e. the odd derivatives h0

ξ (ξ ) and h0
ξξξ (ξ ) do not vanish, then these

will affect the eigenvalue corrections; here we consider the symmetric case as the
leading-order effect. Hence, we have proved the following Assertion.

Assertion 2. If the flat interface is unstable in the RT case, i.e. there exists real
λ

(n)
+0 > 0, then the addition of a positive curvature (concave interface; cf. figure 7a) makes

the physical system more unstable, while the addition of negative curvature (convex
interface; cf. figure 7b) makes the system less unstable. The eigenvalues obey

λ
(n)
± = λ

(n)
±0 + ελ

(n)
±1 + o(ε), (3.23)

where λ
(n)
±0 and λ

(n)
±1 are given by (3.20) and (3.22), respectively.

† Alternatively, the problem of finding the eigenvalue perturbation can be done with the help of
the adjoint eigenvalue problem.
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Figure 7. Two generic curved interfaces; phase 1 is the (heaviest) liquid phase.
(a) Concave interface: κ > 0. (b) Convex interface: κ < 0.

In order to appreciate these results, let us make the following few corollary-type
clarifications: First, the flat-interface results, given by the growth rates (3.20), are
trivially recovered in the limit of vanishing base-state curvature κ → 0, i.e. ε → 0; the
same applies to the subsequent results for the RM instability and three-dimensional
interfaces. Note that while the base-state curvature considered in this paper is due
to the presence of surface tension (for the sake of concreteness), this study should
have analogous implications for the stability characteristics regardless of the physical
origins of the base-state curvature, which signifies the geometrical nature of the
found effects. Second, the interpretation of these curvature effects is not as trivial
as one might think (i.e. that the presence of surface tension tends to flatten the
interface, since the curved-interface base state is truly an equilibrium base state).
Third, because of the curvature effect, the RT instability can be reversed; i.e. the
sign of the growth rate can change as a function of base-state curvature. Indeed,
if the heavy phase 1 accelerates the light phase 2 and if the interface is flat, then
there should be no instability according to the RT criterion; however, if the interface
is concave (cf. figure 7a), then the instability may appear. In fact, the above two
points can be illustrated with the well-known phenomena of vapour-filled underwater
collapsing bubbles (Birkhoff 1954; Plesset 1954), which are unstable despite that the
denser liquid is accelerating the lighter vapour. This problem of underwater collapsing
bubbles has been studied exactly because of its spherical symmetry. Similar effects
were found in the problems of radially imploding/exploding spherical (Mikaelian
1990) and cylindrical (Mikaelian 2005) shells. However, to the author’s knowledge the
fact that this is a particular case of the more general effect of interfacial curvature
has never been established.

Lastly, it is known that the RT theory is valid only in the small amplitude limit, but
when the interfacial distortions become significant the rate of their growth deviates
substantially from the one predicted by the RT theory (Lewis 1950). Apparently, one
of the sources of these deviations is finger formation and thus non-zero curvature:
the fingers can be considered, in a quasi-static approximation, as a new base state
which is subject to perturbations. The latter will have growth rate different from the
case of a flat-interface base state, as we just demonstrated.

3.5. Stability analysis: the RM case

The stability characteristics of curved interfaces in the RM case are more complicated
than in the RT case. Here we consider the ‘pure’ RM case, which in the situation
of curved interfaces requires the presence of surface tension; otherwise, non-trivial
h0(ξ ) would not exist. In view of the time dependence of V (τ ), the stability
analysis will naturally be performed in the Laplace transform space with the idea
to determine the perturbed location of singularities in the complex plane of s.
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First, consider the problem in the frame of reference moving with the interface.
Then the starting point is system (3.14) with g = 0 and V (τ ) = V0H (τ ). Let the

Laplace transform of φ̃′ be denoted by Φ(s; ξ, η) and that of f̃ ′ by F (s; ξ, η).
Then, applying the Laplace transform to (3.14) and eliminating F (s; ξ, η), we
find

s2Φ(s) − sφ̃′(0) = −sV0f̃
′(0)

+ Bo−1
[
f̃ ′

ξξ (0) + Φξξη − ε
(
h0

ξξξΦξ + 2h0
ξξΦξξ + h0

ξΦξξξ

)]
. (3.24)

Since the problem for the potential function has the solution

Φ(s; ξ, η) =
∑

n

Ane
|n|η einξ (3.25)

in the curved region, one finds that the location of singularities is dictated by the
quadratic equation

s2 = Bo−1n2(2εκ − |n|), where κ =

∫ π

−π

h0
ξξ dξ . (3.26)

Clearly, within the asymptotic approximation, ε � 1, the perturbation potential
function should be neutrally stable in the moving frame of reference. However,
one might guess that it may become unstable for high enough curvature κ .

Now, let us look at the problem in the laboratory frame of reference. Performing
calculations analogous to the above analysis, one ends up with the following formula
for the location of singularities:

s2 + |n|[Bo−1n2 + sV0] − 2εn2κBo−1 = 0. (3.27)

For clarity, let us expand s = s0 + εs1 + o(ε); then one finds

s0 = ±
√

−|n|[Bo−1n2 + sV0], s1 =
2n2κBo−1

2s0 + |n|V0

. (3.28)

The latter expression indicates that even if in the absence of curvature (κ ≡ 0) the
perturbation velocity field is not growing in time, i.e. s0 is imaginary, the addition of a
non-zero curvature leads to either stabilization or destabilization depending upon the
sign of κ . Also, the addition of interfacial curvature may either enhance or suppress
an already-unstable perturbation velocity field. The results of this subsection can be
summarized as follows.

Assertion 3. The neutrally stable flat interface under the condition of impulsive
acceleration may become either exponentially stable or unstable in the laboratory frame
of reference, depending upon the sign of the added interfacial curvature.

4. Three-dimensional curved interfaces
With the above understanding of the stability of two-dimensional flat and weakly

curved interfaces, one can address the stability of three-dimensional rims, as motivated
by figure 2. Naturally, the main question of interest is the rim instability along ξ -axis,
as shown schematically in figure 8. The idea of the stability analysis is the same as in
§ 3, i.e. to analyze the structure of the solution near the rim tip, so that locally it is
almost flat with O(ε) curvature. Then, the translation of the results of the previous
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Figure 8. Three-dimensional rim.

section onto the three-dimensional case turns out to be straightforward, as suggested
by the structure of the velocity potential solution, i.e. the solution of the problem
analogous to (3.4):

�φ = 0,

y = εh(ξ ) : φ = Φ(ξ, ζ ).
(4.1)

The zero- and first-order approximations read

φ(j )(τ, ξ, η, ζ ) =

∫
�

+∞∑
n=−∞

A(j )
n (τ )eikξe

√
k2+|n|2ηeinζ dk, j = 1, 2, (4.2)

and therefore, as can be easily determined, one gets the eigenvalue approximations
λ

(n)
±0 and λ

(n)
±1 analogous to (3.20) and (3.22):

λ
(n)
±0 = ±

[
− (g − 1)

√
k2 + |n|2 − Bo−1(k2 + |n|2)3/2

]1/2
, (4.3a)

λ
(n)
±1 � Bo−1 n2

λ
(n)
±0

∫ π

−π

h0
ζ ζ dζ ; (4.3b)

i.e. the only difference is that the discrete wavenumber, n, (in ζ -direction) in (3.20)
is replaced with the wavenumber in the (ξ, ζ )-plane,

√
k2 + |n|2. This fact and (4.2)

for the perturbation velocity field allow one to clearly see the energy argument made
in § 1.2: the curvature affects the depth of penetration of a disturbance into the
bulk, and thus the factor |k| in (1.1) and (1.2) is modified. In fact, for the long-wave
perturbations of a rim of a liquid sheet of thickness 2π, i.e. when |k|−1 � 2π, the
depth of penetration is ∼ 2π and therefore the factor |k| in (1.1) and (1.2) is replaced
by (2π)−1. The latter of course affects the growth rate and the wavenumber selection.
Since, the eigenvalue has the structure

λ = λ0(k; n) + C(n)κ, (4.4)

where κ is the curvature, the curvature in ζ -direction has an effect on the wavenumber
selection in ξ -direction (cf. figure 9). For example, convex interfaces stabilize the
physical system and narrow the range of unstable wavenumbers. Also, the effect of
increasing surface tension (or, equivalently, decreasing Bo) is not only to stabilize
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Figure 9. Effect of the interfacial curvature on the eigenvalues in the three-dimensional case
for g = 0, ε = 0.02, κ = ±1.0, n= 1 and two values of Bond number, Bo =2 and Bo = 10 in
(4.4). Solid curve corresponds to zero curvature, dashed line to concave interface and dotted
line to convex interface.

short wavelengths, as known (see solid lines in figure 9) from the classical theory of
Drazin & Reid (2004), but also to amplify the stabilizing or destabilizing effect of
curvature depending upon its sign, as suggested by figure 9. Thus, the analysis of
three-dimensional curved interfaces can be summarized as follows.

Assertion 4. The stability of three-dimensional rims, as that shown in figure 8, is
affected by the transverse curvature: concave interfaces are less stable than flat ones,
while convex interfaces are more stable. The range of lengthwise-unstable wavenumbers
(i.e. along-the-rim wavenumbers) is narrowed in the case of convex interfaces.

5. Conclusions
In this work, increased understanding of the RM instability was gained, which

uncovered important particulars missing in Richtmyer’s original treatment, including
the effects of reference frames and initial velocity field perturbations. The second
main contribution of this study is the clarification of the interfacial curvature effects
in the two-dimensional and three-dimensional cases on the development of the RT
and RM instabilities, as well as on the unstable wavenumbers selection. All the major
results are summarized in Assertions 1–4. The analysis of the stability of curved
interfaces also led to the rigorous generalization of the classical idea of Layzer (1955)
on approximating the potential function in free-boundary problems with curved base-
state interfaces. The key ingredients of the approach are the linear operator and the
boundary perturbation theories.

Since in three dimensions a curved interface is characterized by two principal
curvatures (Spivak 1999), the three-dimensional case leaves some open questions, in
particular the effects of the second curvature R−1

2 , as illustrated in figure 10: namely
the stability characteristics of a rim bent in the transverse (cf. figure 10a) and the
longitudinal (cf. figure 10b) directions are not understood yet. Finally, it would also be
interesting to analyze the general case of time-dependent accelerations, i.e. in between
the constant and impulsive ones.
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Figure 10. On the presence of second curvature in the three-dimensional case.
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